Fungal Induced Protein Hyperacetylation Identified by Acetylome Profiling
نویسندگان
چکیده
Lysine acetylation is a key post-translational modification that regulates diverse proteins involved in a range of biological processes. The role of histone acetylation in plant defense is well established and it is known that pathogen effector proteins encoding acetyltransferses can directly acetylate host proteins to alter immunity. However, it is unclear whether endogenous plant enzymes can modulate protein acetylation during an immune response. Here we investigate how the effector molecule HC-toxin, a histone deacetylase inhibitor, produced by Cochliobolus carbonum race 1 promotes pathogen virulence in maize through altering protein acetylation. Using mass spectrometry we globally quantified the abundance of 3,636 proteins and the levels of acetylation at 2,791 sites in maize plants treated with HC-toxin as well as HC-toxin deficient or producing strains of C. carbonum. Analyses of these data demonstrate that acetylation is a widespread post-translational modification impacting proteins encoded by many intensively studied maize genes. Furthermore, the application of exogenous HC-toxin enabled us to show that the activity of plant-encoded enzymes can be modulated to alter acetylation of non-histone proteins during an immune response. Collectively, these results provide a resource for further mechanistic studies examining the regulation of protein function and offer insight into the complex immune response triggered by virulent C. carbonum. . CC-BY-NC-ND 4.0 International license peer-reviewed) is the author/funder. It is made available under a The copyright holder for this preprint (which was not . http://dx.doi.org/10.1101/057174 doi: bioRxiv preprint first posted online Jun. 5, 2016;
منابع مشابه
Fungal-induced protein hyperacetylation in maize identified by acetylome profiling
Lysine acetylation is a key posttranslational modification that regulates diverse proteins involved in a range of biological processes. The role of histone acetylation in plant defense is well established, and it is known that pathogen effector proteins encoding acetyltransferases can directly acetylate host proteins to alter immunity. However, it is unclear whether endogenous plant enzymes can...
متن کاملProteome-wide profiling of protein lysine acetylation in Aspergillus flavus
Protein lysine acetylation is a prevalent post-translational modification that plays pivotal roles in various biological processes in both prokaryotes and eukaryotes. Aspergillus flavus, as an aflatoxin-producing fungus, has attracted tremendous attention due to its health impact on agricultural commodities. Here, we performed the first lysine-acetylome mapping in this filamentous fungus using ...
متن کاملGeldanamycin-Induced Osteosarcoma Cell Death Is Associated with Hyperacetylation and Loss of Mitochondrial Pool of Heat Shock Protein 60 (Hsp60)
Osteosarcoma is one of the most malignant tumors of childhood and adolescence that is often resistant to standard chemo- and radio-therapy. Geldanamycin and geldanamycin analogs have been recently studied as potential anticancer agents for osteosarcoma treatment. Here, for the first time, we have presented novel anticancer mechanisms of geldanamycin biological activity. Moreover, we demonstrate...
متن کاملInduced Acidic chitinase Expression and Scab-Resistant in Wheat Under Field Condition
Fusarium head blight (FHB) caused by Fusarium graminearum is responsible for billions of dollars in agriculture losses. The goal of the present study was evaluation the expression of acidic chitinase, one of PR proteins, in wheat defense response against different FHB induced treatments in 'Falat' as a highly susceptible and 'Sumai3' as a tolerant cultivar. These treatments contained fungi extr...
متن کاملGlobal Insight into Lysine Acetylation Events and Their Links to Biological Aspects in Beauveria bassiana, a Fungal Insect Pathogen
Lysine acetylation (Kac) events in filamentous fungi are poorly explored. Here we show a lysine acetylome generated by LC-MS/MS analysis of immunoaffinity-based Kac peptides from normal hyphal cells of Beauveria bassiana, a fungal entomopathogen. The acetylome comprised 283 Kac proteins and 464 Kac sites. These proteins were enriched to eight molecular functions, 20 cellular components, 27 biol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016